
Please download and install the 
Slido app on all computers you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.



2 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Daphne Ippolito and Chenyan Xiong

2 CMU 11-667 Fall 2024

Training with Synthetic Data

Large Language Models: Methods and Applications
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Learning Objectives

Learn the basics of training with synthetic data

Learn various ways to curate synthetic data

Learn recent advancements on synthetic data generation

Understand the benefits and limitations of training with synthetic data
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Outline

Why Synthetic Data

Synthetizing Labels/Rewards

Synthetizing Training Data

What is Good Synthetic Data?

Recent Methodologies

Limitations
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Why Synthetic Data?

A cheap and fast way to obtain supervised labels
● A typical manual label, on simple tasks, costs nearly $1, and lots of time and effort

Ask LLMs to Label Search Relevance [1]

[1] Farzi et al. 2024. Pencils Down! Automatic Rubric-based Evaluation of Retrieve/Generate Systems  
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Why Synthetic Data?

To distill from large language models
● Closed LLMs are trained with lots of extra signals and $$$

Distillation Step-by-Step [2]

[2] Hsieh et al. 2023. Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
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Why Synthetic Data?

To distill from large language models
● Closed LLMs are trained with lots of extra signals and $$$

Distillation Step-by-Step [2]

[2] Hsieh et al. 2023. Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
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Why Synthetic Data?

Create extra pretraining data
● For data limited scenarios (tail language, special domain, etc.)

Pretraining Loss with Repeating Data (Epochs) [3]

[3] Muennighoff  et al. 2023. Scaling Data-Constrained Language Models. 
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Why Synthetic Data?

Create extra pretraining data
● For data limited scenarios (tail language, special domain, etc.)

Pretraining Loss with Repeating Data (Epochs) [3] Overfitting with Too Many Repetitions [3]

[3] Muennighoff  et al. 2023. Scaling Data-Constrained Language Models. 
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Why Synthetic Data?

Create extra pretraining data
● To overcome the upper bound of available web data [4]

[4] The Information
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Why Synthetic Data?

Create extra pretraining data
● To overcome the upper bound of available web data [4]

[4] https://www.theinformation.com/articles/openai-shifts-strategy-as-rate-of-gpt-ai-improvements-slows
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Why Synthetic Data?

Create extra pretraining data
● To overcome the upper bound of available web data [4]

[4] https://www.theinformation.com/articles/openai-shifts-strategy-as-rate-of-gpt-ai-improvements-slows
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Why Synthetic Data?

Self-Play Towards AGI

Training with LLM’s Own Generated Data [4]

[5] Huang et al. 2022. Large Language Models Can Self-Improve
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Why Synthetic Data?

Self-Play Towards AGI

Training with LLM’s Own Generated Data [4]

[5] Huang et al. 2022. Large Language Models Can Self-Improve
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Why Synthetic Data?

Self-Play Towards AGI
● Alpha-Go is trained heavily by self-play
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Outline

Why Synthetic Data

Synthetizing Labels/Rewards

Synthetizing Training Data

What is Good Synthetic Data?

Recent Methodologies

Limitations
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Synthetizing Labels/Rewards

LLM-as-a-Judge:
● Prompt LLMs to label data
● Often pairwise labeling

[6] Zheng et al. 2023. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena
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Synthetizing Labels/Rewards

LLM-as-a-Judge:
● Prompt LLMs to label data
● Often pairwise labeling

[6] Zheng et al. 2023. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena

Data to Label:
Compare two data 
points, easier to label

Prompt GPT-4 to judge 
which one is better, 
with rationales for 
consistency
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Synthetizing Labels/Rewards: How does it work?

Human preferences collected from Chatbot Arena

[7] Chiang et al. 2024. Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference
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Synthetizing Labels/Rewards: How does it work?

Human preferences collected from Chatbot Arena

[7] Chiang et al. 2024. Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference
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Synthetizing Labels/Rewards: How does it work?

Correlation of LLM labels and human labels

[6] Zheng et al. 2023. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena

Average Win Rates of Models from Different Judges [6]
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Synthetizing Labels/Rewards: Further Improvements

Self-Consistency: Sampling multiple answers and aggregating to the top one

[8] Wang et al. 2023. Self-consistency improves chain of thought reasoning in language models 
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Synthetizing Labels/Rewards: Further Improvements

Self-Consistency: Sampling multiple answers and aggregating to the top one

[8] Wang et al. 2023. Self-consistency improves chain of thought reasoning in language models 

Performance of PaLM-540B with Different Aggregation [8]
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Synthetizing Labels/Rewards: Further Improvements

Generative Verifiers: Verify/label step-by-step [9]

[9] Zhang et al. 2024. Generative Verifiers: Reward Modeling as Next-Token Prediction 

Bring in CoT into LLM reward models
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Bring in CoT into LLM reward models



27 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Synthetizing Labels/Rewards: Further Improvements

Generative Verifiers: Verify/label step-by-step [9]

[9] Zhang et al. 2024. Generative Verifiers: Reward Modeling as Next-Token Prediction 

Significantly Improved Data Efficiency on Reasoning Tasks
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Synthetizing Labels/Rewards: Further Improvements

Generative Verifiers: Unifying Reward/Verification and Generation [9]

[9] Zhang et al. 2024. Generative Verifiers: Reward Modeling as Next-Token Prediction 

Potential to Unite Reward Model and Generation Model
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Synthesizing Training Data

Many scenarios not only limited in labels, but also data.
● E.g., instructions: there was no publicly available instructions from real LLM production

Generating data for certain part of the task maybe easier than learning the task
● Generating a question for a given answer versus answering it
● Generating a caption for a video versus generation a video
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Synthesizing Training Data: Self-Instruct

Generating Instruction Tuning Data using LLMs

[10] Wang et al. 2023. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions 
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Synthesizing Training Data: Self-Instruct

Generating Instruction Tuning Data using LLMs

[10] Wang et al. 2023. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions 
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Synthesizing Training Data: Self-Instruct

Generating Instruction Tuning Data using LLMs

[10] Wang et al. 2023. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions 
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Synthesizing Training Data: Self-Instruct

Generating Instruction Tuning Data using LLMs

[10] Wang et al. 2023. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions 
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Synthesizing Training Data: Self-Instruct

Improved performance when fine-tuned upon

[10] Wang et al. 2023. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions 

Significantly Improved 
Instruction Following of 
Vanilla GPT3

Distilled Most of 
InstructGPT out
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Synthesizing Training Data: Self-Instruct

Improved performance when fine-tuned upon

[10] Wang et al. 2023. SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions 

Significantly Improved 
Instruction Following of 
Vanilla GPT3

Distilled Most of 
InstructGPT out

Still Useful with 
Supervised Labels



38 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Synthesizing Training Data and Label: Self-Reward

Combine self-instruct and LLM-as-a-Judge [11]

From Self-Instruct

[11] Yuan et al. 2024. Self-Rewarding Language Models.   
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Synthesizing Training Data and Label: Self-Reward

Combine self-instruct and LLM-as-a-Judge [11]

From Self-Instruct To Self-Reward

[11] Yuan et al. 2024. Self-Rewarding Language Models.   



40 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

Synthesizing Training Data and Label: Self-Reward

Combine self-instruct and LLM-as-a-Judge [11]

From Self-Instruct To Self-Reward

Use the student itself as a reward model

[11] Yuan et al. 2024. Self-Rewarding Language Models.   
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Synthesizing Training Data and Label: Self-Reward

Combine self-instruct and LLM-as-a-Judge [11]

Improvement Through Iterations 1-3

[11] Yuan et al. 2024. Self-Rewarding Language Models.   
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Synthesizing Training Data and Label: Self-Reward

Task difference: evaluating a generation is easier than generating it

● Instruction are still from the teacher

[11] Yuan et al. 2024. Self-Rewarding Language Models.   
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What is Good Synthetic Training Data?

High-Quality: Correctness
● Various filters and checkers

Diverse: not duplicate with each other
● Similarity based filters



47 CMU 11-667 Fall 2024CMU 11-667 Fall 2024

What is Good Synthetic Training Data?

High-Quality: Correctness
● Various filters and checkers

Diverse: not duplicate with each other
● Similarity based filters

Effective for training?
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Synthetic Training Data Curation: Active Learning

Active Learning Assumption: training data that the model performs worse on are more valuable
● Learn from mistakes
● Emphasize on data points hard for the model

[12] Lee et al. 2024. LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
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Synthetic Training Data Curation: Active Learning

Active Learning Assumption: training data that the model performs worse on are more valuable
● Learn from mistakes
● Emphasize on data points hard for the model

[12] Lee et al. 2024. LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement

LLM2LLM [12]
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Synthetic Training Data Curation: Active Learning

Performance Starting from Different Number of Seed Data [12]

[12] Lee et al. 2024. LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
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What is Good Synthetic Training Data?

●  

 

 

[13] Grosse et al. 2023 Studying Large Language Model Generalization with Influence Functions.
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What is Good Synthetic Training Data?

●  

 

 

[13] Grosse et al. 2023 Studying Large Language Model Generalization with Influence Functions.

Improvement on target reference metric
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What is Good Synthetic Training Data?

●  

 

 

[13] Grosse et al. 2023 Studying Large Language Model Generalization with Influence Functions.

Improvement on target reference metric

Two challenges:
1. Very expensive to calculate. Require actual training of the model
2. Pointwise data valuation while training is set level
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Synthetic Training Data Influence: Influence Function Approximation

●  

Approximated using local Taylor Expansion

Ignore the Hessian for Efficiency
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Synthetic Training Data Influence: Influence Function Approximation

●  

Approximated using local Taylor Expansion

Ignore the Hessian for Efficiency

Measure data influences by its similarity of gradients with validation data
A common approach derived from many starting points
• Data influence
• Meta Learning
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Synthetic Training Data Influence: Influence Function Approximation

LESS: selecting synthetic instruction tuning data by gradient similarities [14]

[14] Xia et al. 2023. LESS: Selecting Influential Data for Targeted Instruction Tuning 
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Synthetic Training Data Influence: Influence Function Approximation

LESS: selecting synthetic instruction tuning data by gradient similarities [14]

[14] Xia et al. 2023. LESS: Selecting Influential Data for Targeted Instruction Tuning 
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Synthetic Training Data Influence: Influence Function Approximation

LESS: selecting synthetic instruction tuning data by gradient similarities [14]

[14] Xia et al. 2023. LESS: Selecting Influential Data for Targeted Instruction Tuning 
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Synthetic Training Data Influence: Influence Function Approximation

LESS: selecting instruction tuning data by gradient similarities [14]

[14] Xia et al. 2023. LESS: Selecting Influential Data for Targeted Instruction Tuning 
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Synthetic Training Data Influence: Influence Function Approximation

LESS: selecting instruction tuning data by gradient similarities [14]

[14] Xia et al. 2023. LESS: Selecting Influential Data for Targeted Instruction Tuning 

Performance with Gradient Based Instruction Data Selection [14]
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Synthetic Training Data Influence: Model Approximation

●  
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Synthetic Training Data Influence: Model Approximation

Learn the oracle data influence in the teacher model

Building a Feedback Loop from Data Influence to Data Synthesizer [15]

[15] Li et al. 2024. Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
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Synthetic Training Data Influence: Model Approximation

Learn the oracle data influence in the teacher model

Building a Feedback Loop from Data Influence to Data Synthesizer [15]

[15] Li et al. 2024. Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
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Synthetic Training Data Influence: Model Approximation

Various controls on synthetic training data curation

[15] Li et al. 2024. Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
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Synthetic Training Data Influence: Model Approximation

Learn to generate more influential synthetic data

Performance of Different Synthetic Data Curation Methods [15]

[15] Li et al. 2024. Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
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Synthetic Training Data Influence: Model Approximation

Learn to generate more influential synthetic data

Generating More Influential Data Through Iterations [15]

[15] Li et al. 2024. Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
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Synthetic Training Data Influence: Model Approximation

Learn to generate more influential synthetic data

Generating More Influential Data Through Iterations [15]

[15] Li et al. 2024. Montessori-Instruct: Generate Influential Training Data Tailored for Student Learning
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Recap

Prompt LLMs to generate synthetic training data
● Labels
● Generative Rewards
● Entire Training Data

Various recent progresses in identifying good synthetic training data
● Quality
● Self-consistency
● Informativeness
● Data influence and its approximations
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Recap

Prompt LLMs to generate synthetic training data
● Labels
● Generative Rewards
● Entire Training Data

Various recent progresses in identifying good synthetic training data
● Quality
● Self-consistency
● Informativeness
● Data influence and its approximations

All the above work on individual data points, but training is done on the set
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Model Collapse with Synthetic Training

Lost of data variety in data synthetize
● Synthetic dataset lacks long tail variety
● Though may maintain average quality

[16] Shumailov et al. 2024. AI models collapse when trained on recursively generated data 
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Lost of data variety in data synthetize
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Model Collapse with Synthetic Training

Generated data distribution loses the high perplexity part

[16] Shumailov et al. 2024. AI models collapse when trained on recursively generated data 

Perplexity of Synthetic Data Evaluated by Wikitext LM [16]
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Concentrate 
to head

Model Collapse with Synthetic Training

Generated data distribution loses the high perplexity part

[16] Shumailov et al. 2024. AI models collapse when trained on recursively generated data 

Perplexity of Synthetic Data Evaluated by Wikitext LM [16]

Hallucination
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Recap

Prompt LLMs to generate synthetic training data
● Labels
● Generative Rewards
● Entire Training Data

Various recent progresses in identifying good synthetic training data
● Quality
● Self-consistency
● Informativeness
● Data influence and its approximations

Current capability
● Distillation
● Mitigate the lack of SFT data, but not replace them
● A few round of benefits from self-play
● Assist pretraining
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